The probability of hitting a target by three marks men is $\frac{1}{2} , \frac{1}{3}$ and $\frac{1}{4}$ respectively. If the probability that exactly two of them will hit the target is $\lambda$ and that at least two of them hit the target is $\mu$ then $\lambda + \mu$ is equal to :-

  • A

    $\frac{13}{24}$

  • B

    $\frac{6}{24}$

  • C

    $\frac{7}{24}$

  • D

    None

Similar Questions

A box $'A'$ contanis $2$ white, $3$ red and $2$ black balls. Another box $'B'$ contains $4$ white, $2$ red and $3$ black balls. If two balls are drawn at random, without replacement, from a randomly selected box and one ball turns out to be white while the other ball turns out to be red, then the probability that both balls are drawn from box $'B'$ is

  • [JEE MAIN 2018]

If an unbiased dice is rolled thrice, then the probability of getting a greater number in the $i^{\text {th }}$ roll than the number obtained in the $(i-1)^{\text {th }}$ roll, $i=2,3$, is equal to :

  • [JEE MAIN 2024]

Four persons independently solve a certain problem correctly with probabilities $\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{8}$. Then the probability that the problem is solved correctly by at least one of them is

  • [IIT 2013]

A bag contains $8$ red and $7$ black balls. Two balls are drawn at random. The probability that both the balls are of the same colour is

Two numbers $x$ $\&$ $y$ are chosen at random (without replacement) from the set $\{1, 2, 3, ......, 1000\}$. Then the probability that $|x^4 - y^4|$ is divisible by $5$, is -