14.Probability
normal

The probability of hitting a target by three marks men is $\frac{1}{2} , \frac{1}{3}$ and $\frac{1}{4}$ respectively. If the probability that exactly two of them will hit the target is $\lambda$ and that at least two of them hit the target is $\mu$ then $\lambda + \mu$ is equal to :-

A

$\frac{13}{24}$

B

$\frac{6}{24}$

C

$\frac{7}{24}$

D

None

Solution

$\lambda  = \overline {\rm{A}} {\rm{BC}} + \overline {\rm{B}} {\rm{CA}} + \overline {\rm{C}} {\rm{AB}}$

$=\left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}\right)+\left(\frac{2}{3} \times \frac{1}{4} \times \frac{1}{2}\right)+\left(\frac{3}{4} \times \frac{1}{2} \times \frac{1}{2}\right)=\frac{6}{24}=\frac{1}{4}$

$\mu=\lambda+\mathrm{ABC}=\frac{1}{4}+\left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}\right)=\frac{7}{24}$

$\lambda+\mu=\frac{1}{4}+\frac{7}{24}=\frac{13}{24}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.